3,193 research outputs found

    Characterisation of modified glass-ionomer cements for medical applications

    Get PDF
    Medical-grade glass ionomer cements (GICs) are commercially available for surgical implantation in otology. GICs have advantageous properties as a bone replacement material, including the ability to bond to mineralised tissue such as bone and a good biocompatibility in vivo. However, cement compositions are largely based on the GIC dental cement compositions they were derived from and are not optimised for use in medical applications. The specific objective of this project was to produce improved GICs for surgical application in otology, based upon a commercially available bone cement and tailor the properties to the specific needs of the surgeon while preserving the beneficial properties of the original composition. Novel GICs based on the substitution of calcium with either strontium, barium or a mixture of species in the ionomer glass component were fabricated and characterisation of the glass and cements undertaken in addition to NMR (nuclear magnetic resonance) analysis of the effect of additives in GICs setting reactions. The substitution of strontium and barium ions produced cements with improved properties that compared favourably with the commercial material (SerenoCem®) used as a control in this study. Radiopacity and biocompatibility were enhanced without a significant negative effect on the cement properties. XRD (X-Ray Diffraction) of the heat-treated glasses identified Sr/Ba analogous phases present to those reported previously in the literature. It was concluded that modified ionomer glasses based on the SerenoCem® medical cement composition, tailored for improved properties, will allow the material to accommodate the specific needs of the surgeon and therefore increase clinical viability in bone replacement surgery

    The amyloid precursor protein: A biochemical enigma in brain development, function and disease

    Get PDF
    AbstractFor 20years the amyloid cascade hypothesis of Alzheimer disease (AD) has placed the amyloid-β peptide (Aβ), formed from the amyloid precursor protein (APP), centre stage in the process of neurodegeneration. However, no new therapeutic agents have reached the clinic through exploitation of the hypothesis. The APP metabolites, including Aβ, generated by its proteolytic processing, have distinct physiological functions. In particular, the cleaved intracellular domain of APP (AICD) regulates expression of several genes, including APP itself, the β-secretase BACE-1 and the Aβ-degrading enzyme, neprilysin and this transcriptional regulation involves direct promoter binding of AICD. Of the three major splice isoforms of APP (APP695, APP751, APP770), APP695 is the predominant neuronal form, from which Aβ and transcriptionally-active AICD are preferentially generated by selective processing through the amyloidogenic pathway. Despite intensive research, the normal functions of the APP isoforms remain an enigma. APP plays an important role in brain development, memory and synaptic plasticity and secreted forms of APP are neuroprotective. A fuller understanding of the physiological and pathological actions of APP and its metabolic and gene regulatory network could provide new therapeutic opportunities in neurodegeneration, including AD

    Angiotensin-Converting Enzyme 2: The First Decade

    Get PDF
    The renin-angiotensin system (RAS) is a critical regulator of hypertension, primarily through the actions of the vasoactive peptide Ang II, which is generated by the action of angiotensin-converting enzyme (ACE) mediating an increase in blood pressure. The discovery of ACE2, which primarily metabolises Ang II into the vasodilatory Ang-(1-7), has added a new dimension to the traditional RAS. As a result there has been huge interest in ACE2 over the past decade as a potential therapeutic for lowering blood pressure, especially elevation resulting from excess Ang II. Studies focusing on ACE2 have helped to reveal other actions of Ang-(1-7), outside vasodilation, such as antifibrotic and antiproliferative effects. Moreover, investigations focusing on ACE2 have revealed a variety of roles not just catalytic but also as a viral receptor and amino acid transporter. This paper focuses on what is known about ACE2 and its biological roles, paying particular attention to the regulation of ACE2 expression. In light of the entrance of human recombinant ACE2 into clinical trials, we discuss the potential use of ACE2 as a therapeutic and highlight some pertinent questions that still remain unanswered about ACE2

    Thermal kinetic inductance detectors for ground-based millimeter-wave cosmology

    Get PDF
    We show measurements of thermal kinetic inductance detectors (TKID) intended for millimeter wave cosmology in the 200-300 GHz atmospheric window. The TKID is a type of bolometer which uses the kinetic inductance of a superconducting resonator to measure the temperature of the thermally isolated bolometer island. We measure bolometer thermal conductance, time constant and noise equivalent power. We also measure the quality factor of our resonators as the bath temperature varies to show they are limited by effects consistent with coupling to two level systems.Comment: 8 pages, 4 figures. Submitted to Journal of Low Temperature Physic

    Practices of strength and conditioning coaches in professional sports:A systematic review

    Get PDF
    The practices of strength and conditioning (S&C) coaches have been reported in various professional sports. This study aims to comprehensively assess this available evidence to help establish whether theoretical, practical, and evidence-based guidelines align with the practices employed by these experienced S&C coaches. Three databases were searched (PubMed, SPORTDiscus, and Cochrane) until November 2020. Studies surveying the practices of S&C coaches in professional sports using a survey design with common questions, written in English, and published in peer-reviewed journals were reviewed. Eight studies (n = 318 S&C coaches) were finally included. All studies adapted a similar survey, providing a strong basis for comparison between sports. Periodization strategies were widely used (89%), with training volume consistently reduced during the in-season period. Olympic weightlifting was commonly used across sports, except in baseball (29%). Plyometric exercises were predominantly prescribed for speed development (74%) and lower body power (68%), which were mostly programed as complex training (45%) and conducted all year round (52%). Flexibility exercises were mostly performed before practice (83%) for 6–10 min (40%). Physical tests were mainly conducted during the pre-season period (66%), with body composition (86%) being the most used test. S&C coaches generally adhered to current guidelines and research in S&C concerning training prescription and physical testing. Whereas, Intersport differences were also noted and further discussed. Results of this study can be used by S&C coaches to plan, implement, and review their professional practices. Furthermore, may inform the development of general and sport-specific guidelines, and future research in S&C

    Fatigue does not increase limb asymmetry or induce proximal joint power shift in habitual, multi-speed runners

    Get PDF
    During prolonged jogging, joint moment and work tend to decrease in the distal (ankle) joint but increase at proximal (hip/knee) joints as performance fatigue manifests, and such adaptations might be expected to occur in sprinting. Fatigue is also thought to increase inter-limb asymmetries, which is speculated to influence injury risk. However, the effects of fatigue on sprint running gait have been incompletely studied, so these hypotheses remain untested. Using statistical parametric mapping, we compared 3-D kinematics and ground reaction force production between the dominant (DL) and non-dominant (NDL) legs of 13 soccer players during both non-fatigued and fatigued sprint running. Contrary to the tested hypotheses, relative between-leg differences were greater in non-fatigued than fatigued sprinting. DL generated higher propulsive impulse due to increased ankle work, while NDL exhibited greater vertical impulse, potentially due to greater hip flexion prior to downward foot acceleration. Whilst few changes were detected in DL once fatigued, NDL shifted towards greater horizontal force production, largely resulting from an increase in plantar flexion (distal-joint) moments and power. After fatiguing running, inter-limb asymmetry was reduced and no distal-to-proximal shift in joint work was detected. These adaptations may attenuate decreases in running speed whilst minimising injury risk

    Goal-directed attention alters the tuning of object-based representations in extrastriate cortex

    Get PDF
    Humans survive in environments that contain a vast quantity and variety of visual information. All items of perceived visual information must be represented within a limited number of brain networks. The human brain requires mechanisms for selecting only a relevant fraction of perceived information for more in-depth processing, where neural representations of that information may be actively maintained and utilized for goal-directed behavior. Object-based attention is crucial for goal-directed behavior and yet remains poorly understood. Thus, in the study we investigate how neural representations of visual object information are guided by selective attention. The magnitude of activation in human extrastriate cortex has been shown to be modulated by attention; however, object-based attention is not likely to be fully explained by a localized gain mechanism. Thus, we measured information coded in spatially distributed patterns of brain activity with fMRI while human participants performed a task requiring selective processing of a relevant visual object category that differed across conditions. Using pattern classification and spatial correlation techniques, we found that the direction of selective attention is implemented as a shift in the tuning of object-based information representations within extrastriate cortex. In contrast, we found that representations within lateral prefrontal cortex (PFC) coded for the attention condition rather than the concrete representations of object category. In sum, our findings are consistent with a model of object-based selective attention in which representations coded within extrastriate cortex are tuned to favor the representation of goal-relevant information, guided by more abstract representations within lateral PFC

    Assessment of contact involvements and scrums in international rugby union match-play using video analysis and microsensor technology methods

    Get PDF
    This study sought to assess the validity of contact involvement (CI) detection using microsensor technology (MST, Catapult Vector) within the context of a Tier One national rugby union (RU) squad, consisting of 44 players. Sensitivity of MST units to detect CI and scrums was assessed in eight test matches, by comparison with match data obtained by video analysis. This paper is the first to assess the sensitivity of MST to the full range of skilled CI which occur in RU, including evaluating “non-performance” collisions, such as incidental collisions or foul play. Sensitivity to tackles made (52.9–84.9%) and ruck hits (53.3–87.2%) was lower than previous research, although ball carries (71.9–93.5%) showed broadly similar sensitivity to established results. The sensitivity of the MST to detect scrums was substantially lower than previous findings, with large positional variation evident (51.4–91.5%). Further refinement of MST software should be considered in order to facilitate valid monitoring of RU performance and injury risk. An additional finding was that video analysis generally demonstrated satisfactory intrarater reliability. This result supports the use of video analysis as a reliable method of assessing RU performance, including CI
    corecore